
16 C O M P U T E R   P U B L I S H E D  B Y  T H E  I E E E  C O M P U T E R  S O C I E T Y  0 0 1 8 - 9 1 6 2 / 1 7 / $ 3 3 . 0 0  ©  2 0 1 7  I E E E

COVER FEATURE TECHNOLOGY FOR HUMAN AUGMENTATIONCOVER FEATURE TECHNOLOGY FOR HUMAN AUGMENTATION

Third Eye: 
A Shopping Assistant 
for the Visually Impaired
Peter A. Zientara, Sooyeon Lee, and Gus H. Smith, Pennsylvania State University

Rorry Brenner and Laurent Itti, University of Southern California

Mary B. Rosson and John M. Carroll, Pennsylvania State University

Kevin M. Irick, SiliconScapes

Vijaykrishnan Narayanan, Pennsylvania State University

Through a combination of wearable cameras, hardware 

accelerators, and algorithms, a vision-based automatic 

shopping assistant allows users with limited or no 

sight to select products from grocery shelves. 

Globally, more than 285 million people are 
visually impaired; for them, tasks that are 
deemed trivial by those with normal sight—
such as picking up a dropped object—are 

a major undertaking. In recent years, breakthroughs 
in visual sensing technology have stimulated efforts 
to help persons with visual impairment (PVIs) become 
more independent. Signal-processing technologies, cen-
tral to visual augmentation, help PVIs navigate inside 
and outdoors1 and identify objects—activities that are 
critical in everyday tasks such as shopping, particu-
larly in supermarkets. Even sighted people are often 

overwhelmed by the amount and variety of products in 
a typical US grocery store, which can have 35,000 unique 
items presented in as many as 30 aisles across 45,000 
square meters. For PVIs, grocery shopping is like nav-
igating an area the size of a football field with moving 
carts, people, and displays at every turn.

To accomplish this daunting task, some PVIs turn 
to family, friends, or community volunteers. Others 
must rely on store assistants, who can make the shop-
ping experience enjoyable or unpleasant, depending on 
their knowledge and personality. Online shopping and 
home-delivery services attempt to mitigate the challenges 



 F E B R U A R Y  2 0 1 7  17

of grocery shopping for PVIs by elim-
inating trips to the store,2,3 but these 
methods limit both social interaction 
and product choices. Assistive tech-
nologies, another mitigation effort, are 
basically computer vision algorithms 
running on mobile platforms. Their 
rudimentary support, which is limited 
to verifying one already located object, 
rapidly breaks down in environments 
where multiple similar items are in 
tightly packed configurations. Even 
advanced vision algorithms often fail to 
distinguish between two variants of the 
same cereal brand, for example. Unique 
 segmentation—essential to recogniz-
ing one item in a tightly packed config-
uration —requires brute-force, compu-
tationally intensive searches that are 
slow in responding to queries.

To address these problems and 
provide PVIs with a more personally 
satisfying in-store experience, we 
developed a vision-based automatic 
shopping assistant that helps users 
select the desired item from a typi-
cal grocery store shelf. Our work is 
part of the NSF-funded Visual Cor-
tex on Silicon project (www.cse.psu 
.edu/research/visualcortexonsilicon 
.expedition). Third Eye—so named 
for the Asian cultural reference to the 
third eye of wisdom and  compassion—
addresses the critical challenge of 
providing suitable user interfaces for 
navigating in a crowded and visu-
ally diverse environment. Our obser-
vations of and interviews with PVIs 
helped us design Third Eye’s navigation 
interfaces to both augment and com-
plement skills that individuals already 
have, such as the ability to identify an 
obstacle with a cane or walking stick. 

To enrich navigation and object 
selection, Third Eye relies on multi-
modal tactile and audio inter faces 
as well as a system based on the 

human-in-the-loop concept, in which 
the system interacts with the user to 
make navigation and selection deci-
sions. For example, the system can ask 
the user to change a wearable camera’s 
orientation so that the camera has a 
more accurate perspective on which to 
base image classification.

We have taken theq system through 
multiple evaluations and refinements 
based on actual PVI use, which pro-
vided insights into what constitutes 
an effective communication interface. 
Participants in our experiments com-
mented favorably on the system, say-
ing that, relative to barcode scanning, 
it felt more like “real shopping.”

SYSTEM INFRASTRUCTURE
As Figure 1 shows, Third Eye consists of 
off-the-shelf smart glasses—equipped 
with a camera and audio channel—
connected to a back-end server system 
that supports real-time video analyt-
ics. The camera is oriented to the user’s 
right eye, and the smart glasses’ field 
of view and resolution dictate the dis-
tance at which objects can be properly 
located and identified. Users also wear 
a glove with a camera on the hand used 
to grasp a product. The glove camera, 
which guides hand movements, must 
also orient the user to keep the product 
in view and avoid any occlusion from 
the arm used to point to and grasp it.

Third Eye uses the store’s wire-
less infrastructure to send the video-
stream to the server, where com-
puter vision algorithms analyze it 
and send back results. This feedback 
then becomes the basis for provid-
ing either audio commands or tac-
tile vibration patterns that guide 
the user’s steps and hands toward 
the desired item. To avoid latency 
between image capture and feedback 
signals, Third Eye incorporates a 
local wireless routing infrastructure, 
which ensures robust, low-latency 
communication with the server, and 
customized hardware to accelerate 
the vision algorithms’ computations.

Images from the smart glasses are 
the basis for directions to move the 
user closer to the desired item. Images 
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FIGURE 1. How Third Eye works. In this 
illustrative scenario, cameras in (a) smart 
glasses and (b) a glove capture video 
that is streamed wirelessly to (c) a server 
for video analysis. The system uses the 
results to guide the user through either 
audio commands based on images from 
the glasses to navigate toward the desired 
item’s proximity or vibrations in the glove 
to acquire the item. The vibrations occur 
in different areas, depending on which 
direction the user’s hand needs to move 
to acquire the desired product. The glove 
consists of six parts: (1) a control and com-
munication module, (2) the camera, (3) 
an up vibration motor, (4) a right vibration 
motor, and (5) a left vibration motor. Not 
visible is the down vibration motor, which 
is on the underside of the palm.
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from the glove camera then help ori-
ent the user to a view that provides 
enough information to the vision algo-
rithms. Inspired by prior efforts that 
used sensor- equipped haptic gloves 
for visual search and interaction with 
smart glasses,4,5 we incorporated vibra-
tional feedback for hand movements 
into the user’s glove. The glove has four 
micromotors to direct movement (up, 
down, left, and right), and simultane-
ous vibration of all four motors directs 
the hand forward to grasp a product 
that is in position. Although audi-
ble feedback has been used to provide 
directional navigation, on the basis of 
observing PVIs and their interactions 
in store environments, we opted to sup-
plement it with tactile feedback in the 
form of vibrations. We found that it is 
not effective in noisy environments and 
draws unwanted attention from other 
shoppers. A headset might address 
these challenges but it would have to be 
highly specialized, incorporating bone 
conduction or the superimposition of 

instructions while allowing for envi-
ronmental noise—a key navigational 
aid for PVIs.

VISION ALGORITHMS
Third Eye’s vision algorithms assist 
users from the time they enter the store 
to the time they leave it. The first task is 
to identify the correct aisle. When users 
are in front of the products in the aisles, 
the camera captures the image and 
uses a gist-of-the-scene algorithm to 
localize their position.6 The algorithm 
extracts a low-dimensional signature of 
the entire image that can support scene 
classification. For each videoframe 
from the camera, it aggregates statistics 
about the scene, including color distri-
bution, luminance, and oriented edges. 
The aggregated statistics summarize 
the scene contents and translate it to a 
gist vector—a low-dimensional holistic 
feature vector—which a support vector 
machine (SVM) classifier processes to 
produce a category label for that scene, 
such as a cereal or coffee aisle.

If users are not in front of a desired 
aisle, they move to another aisle and 
repeat the process until they arrive at 
the desired aisle. Navigation between 
the aisles is not yet completely auto-
mated, but our system effectively 
integrates with the navigation skills 
PVIs already have. Once the user 
is in the right aisle, Third Eye uses 
Speeded up Robust Features (SURF), 
a feature-extraction algorithm and 
template-matching process that uses 
a known pattern of a named object 
to match an object in a partial view.7 
Third Eye extends SURF by providing 
a confidence percentage that a tar-
get item in partial view is the desired 
product. The score helps guide the 
camera position to obtain a better 
view of the object, increasing the con-
fidence that the item being viewed 
is the desired product. The extended 
template-matching algorithm in Third 
Eye matches key points in the camera 
image with the template image. Each 
key-point match provides a location 
of the point in the new image along 
with a confidence of the match. Fig-
ure 2 shows sample results of match-
ing with our first version of SURF, ver-
sion A, which we subsequently refined 
to version B. In Figure 2a, Third Eye 
guides the user to a position that has 
at least a partial product view, which is 
required for SURF to begin the feature- 
extraction and matching process.

Confidence matching
Most confidence-generating algo-
rithms use a fixed threshold to decide 
when the target item is in the captured 
image or select the item with the high-
est confidence level. Most algorithms 
that use a fixed confidence threshold 
will select an item in error because of 
the uncertainty introduced when the 
highest false positive outweighs the 

(a) (b)

FIGURE 2. Version A of the Speeded up Robust Features (SURF) algorithm. (a) Directional 
commands (denoted by white arrows) through an audio channel guide the user so that 
the camera in the glasses can obtain at least a partial view of the product for matching.   
(b) Graph showing confidence levels for three product templates. Third Eye matches these 
points against points in the image template and assigns each match a confidence level, 
which it uses to decide if this is the desired product or if the user should move to another 
item. The horizontal colored lines represent threshold confidence levels.
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lowest true positive.8 The highest false 
positive is the highest confidence cal-
culated when the target item is not in 
the captured image. The lowest true 
positive is the lowest confidence cal-
culated when the target item is in the 
captured image. Whenever the high-
est false positive is stronger than the 
lowest true positive, there is a range 
of uncertainty, because the system 
cannot clearly determine whether 
the object is present or not. In our 
approach, no answer is provided to the 
PVI in this uncertain region; rather, 
the user is directed to move to improve 
the confidence level before the system 
attempts any classification.

In Figure 2b, for example, the 
white horizontal bar denotes the low-
est true positive, and the yellow hor-
izontal bar denotes the highest false 
positive. The distance from the yel-
low to the orange horizontal bars is a 
safety buffer beyond the highest false 
positive. The value must surpass the 
orange bar for Third Eye to conclude 
that the image captured is indeed the 
target item. Given these confidence 
boundaries, the left green bar is in 
the range of uncertainty, so Third Eye 
would instruct the user to get a bet-
ter view. The center green bar exceeds 
the safety buffer, so Third Eye would 
conclude that the target item is in the 
image. The right green bar is below 
even the lowest true positive, so the 
system would ignore it and not issue 
any instructions.

With the range of uncertainty in 
Figure 2b, Third Eye could match key 
points between the template image 
and the camera frame and calculate 
a homography matrix that is based 
on the key points’ relative positions. 
The matrix essentially represents 
the current item orientation (as it 
is now viewed) relative to the item’s 

orientation in the template image, 
which was always front-facing and 
centered in our experiments. This rel-
ative orientation is used to instruct the 
user to obtain a better view.

Expanding matching to the shelf
In version A, the goal was to get the 
user closer to the template orienta-
tion view. When the camera captured 
images that were nearer to this view, 
confidences were higher. However, 
when multiple objects on the same 
shelf have similar features or when the 
user is not close enough to the shelf 
for the algorithm to extract a suffi-
cient number of feature points from 
the viewed object, there is no par-
tial match and no way to calculate a 
homography matrix to increase confi-
dence. To address this problem, Third 
Eye uses shelfwide feature extraction 
and matching, which is based on the 
store’s planogram (a diagram of how 
products are placed on shelves), to 
guide the user closer to the shelf sec-
tion that contains the desired item. 

Once it matches a shelf, Third Eye 
uses the planogram to locate desired 
items and then analyzes the image 
only at a shelf location that contains 
those items. For example, if a shopper 
wanted a particular brand of spaghetti, 
Third Eye would not analyze the entire 
rice and pasta aisle, only the shelf that 
contained pasta and only the part of the 

shelf that contained spaghetti. Narrow-
ing analysis to a particular shelf sec-
tion eliminates some of the problems 
in version A of our algorithm, in which 
shoppers had to wait for Third Eye to 
determine that images were irrelevant 
before hearing additional instructions. 
Rather, in version B of our algorithm, 
key-point matching is for the entire 
shelf section and the user can be as far 
away as 12 feet. Consequently, many 
more feature points are available in 
determining a match, which enables 
robust identification among multiple 
similar objects on the shelf. 

Algorithmic handoff 
from shelf to item
Once the user is within arm’s reach 
of the shelf, the system transfers the 
camera feed from the smart glasses 
to the glove; that is, from navigating 
steps to specifying hand movements. 
To execute this handoff, we first tried 
basing it on the relative size of objects 
in the camera view, which Third Eye 
used to determine the user’s  proximity 

to the shelf. At a certain distance, 
Third Eye stopped directing on the 
basis of the smart glasses and began to 
initiate hand movements on the basis 
of the glove camera. 

We abandoned the auto hand-
off approach after observing that it 
was not robust to changes in head 
alignment and angles; for example, 

THIRD EYE USES SHELFWIDE FEATURE 
EXTRACTION AND MATCHING TO GUIDE 

THE USER CLOSER TO THE SHELF SECTION 
THAT CONTAINS THE DESIRED ITEM.
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head orientation to the object varied 
according to the user’s height. On the 
basis of an experiment with a volun-
teer PVI, we discovered that the user 
might actually be a more effective 
handoff initiator. The PVI—unlike the 
sighted blindfolded participants in 
our proof-of-concept study— routinely 
used a cane and thus never ran into 
the shelves and was able to consis-
tently stop at arm’s length from them. 
We observed that the individual knew 
where to stop even when Third Eye’s 
extraction of depth information failed, 
which led us to modify the transition 
from glasses to glove from system- 
initiated to user-initiated, as shown in 
Figure 3.

SYSTEM REFINEMENTS
In the various iterations of Third Eye 
refinement, we identified two major 
problems: feedback latency, which we 
eventually solved, and power drain, 
which has been mitigated.

Feedback latency
Even when the algorithms were run-
ning on an IBM POWER8 server with 
160 logical cores operating at 3.6GHz, 
for a 1920 × 1080 image of an entire 
aisle, our latencies were 375 ms with 
9,000 feature points in the image. We 
reduced latency to 170 ms by limiting 
the camera’s field of view to a single 
shelf, which has around 4,000 feature 
points. Despite this latency reduction, 

we observed that delayed feedback 
from the system along with sudden 
jerky movements by shoppers caused 
the cameras to lose the object. To miti-
gate this problem, we used the NVIDIA 
GPU K1200 to accelerate object detec-
tion (shelf or item), which reduced 
feedback latency to 110 ms—enough 
to provide a testbed for a single user. 
From the results of testing with the 
K1200, we designed an accelerator to 
run on field-programmable gate arrays 
(FPGAs) that further reduces latency to 
support more concurrent videostreams. 
We are in the process of evaluating our 
customized acceleration scheme.

Power drain
In Third Eye’s earlier versions, the 
smart glasses had a limited battery 
life. At first, we were streaming raw 
video over the wireless channel to the 
server, which drained the battery and 
clogged the wireless bandwidth. We 
then attempted to run software-based 
video compression on the lightweight 
processor in the smart glasses. This 
strategy provided no relief because 
the compression algorithm execu-
tion was slow. We finally moved to a 
camera with built-in hardware accel-
eration for video compression, which 
helped extend battery life to about 20 
minutes.

One possible solution is to con-
serve power by leveraging additional 
information from the smart glasses. 
Instead of using the power-hungry 
video feedback, Third Eye can use 
information from the accelerometers 
and gyroscope to track the shopper’s 
motion. This approach would enable 
video capture to be limited to locations 
that Third Eye knows are relevant on 
the basis of the planogram informa-
tion the store has provided. We have 
already applied techniques similar 

Shelf Shelf

Handoff

Person

Arm’s length

~12 feet

Person

Uses smart glasses 
camera for shelf matching 

Uses glove camera for product 
matching and tracking

(a) (b)

FIGURE 3. User-initiated handoff from shelf matching with smart glasses to item match-
ing with the glove. (a) Third Eye uses shelf matching and a priori information about the 
store’s shelf contents to guide the user’s steps toward the desired item. Shelf matching 
can take place when the user is as far away as 12 feet from the target item. (b) Once 
the user is within arm’s reach of the item, Third Eye uses object matching to guide hand 
movement. When the cane touches the shelf, the user initiates the handoff by muting 
voice commands from Third Eye, which is a signal for the system to begin using the glove 
camera and guide hand movements through glove vibrations. 
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to those used in vision processing to 
decode activities from the accelerom-
eter signals, such walking, turning 
right, and turning left.

EVALUATION RESULTS
Beginning with a proof-of-concept 
study, we performed user experi-
ments with Third Eye at different 
levels to refine it and explore addi-
tional enhancements. Even before the 
proof-of-concept evaluation with an 
integrated prototype, we conducted 
studies using a remote human viewer 
to carry out the work of the visual algo-
rithm still under development (along 
the lines of a Wizard of Oz prototype). 
These earlier studies gave us a rich 
sampling of participant feedback and 
guidance systems.

Proof-of-concept study
We conducted the proof-of-concept 
study with 42 blindfolded sighted par-
ticipants who used a glasses-mounted 
camera with speech guidance and 
version A of SURF (without shelf 
matching and the planogram infor-
mation). For each trial, we positioned 
participants within 5 feet of the shelf 
with the target product. This posi-
tion typically yielded enough feature 
points for each target to at least par-
tially match an individual object, but 
sometimes participants had to move 
without instructions before Third Eye 
could find a partial match. 

Procedure. As part of the study, we 
trained participants before trials in 
how to interpret speech guidance and 
to slightly reposition themselves, such 
as by turning, moving forward or back-
ward, strafing (moving side to side), or 
crouching. In this way, Third Eye could 
register additional feature points. 
Once participants were positioned 

correctly, we asked them to reach out 
and grasp the identified targets. Sep-
arating the positioning and grasping 
phases ensured that the user’s hand 
did not occlude the camera’s view. 
We also found that speech guidance 
and self-repositioning were effective 
in eliminating false positive recogni-
tions. This method worked success-
fully on each of the 10 trials conducted. 
As Figure 4a shows, the time for object 
pickup from first instruction ranged 
from 7.1 to 798.8 s with the majority of 
trials taking between 30 and 90 s.9

Comparison with barcode scan-
ning. To provide a comparison point 

with standard off-the-shelf technol-
ogy, we gave participants a barcode 
scanner with barcodes attached to the 
front-facing shelf below the target. 
For this activity, users stood close to 
the shelf and scanned the barcodes, 
without any guidance other than 
notification that scans were correct. 
All users successfully identified the 
target using the barcode scanner. 
However, as Figure 4b shows, 32 of 34 
participants expressed a clear prefer-
ence (a score higher than 6) for Third 
Eye’s continuous guidance over the 
scanner. More than one participant 
noted that the system “is more like 
real shopping.”
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FIGURE 4. User preferences between Third Eye and barcode scanning in the proof-
of-concept study. (a) Time for the user to grab the object after the first voice instruction 
from the system across 10 trials of the 42 participants. (b) Preference scores for the 39 
users who responded. As the graph shows, 12 users rated Third Eye with a 10, indicating 
“prefer significantly more” over the off-the-shelf scanner in identifying target items. More 
than half the participants gave Third Eye a preference score of 7 or higher.
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Auto handoff
After our proof-of-concept study, 
we evaluated the auto handoff we 
first used in version B of SURF. For 
this evaluation, we used blindfolded 
sighted users who were at least 10 feet 
away from the shelf and gave them 
only audio feedback and little a priori 
instruction. In most cases, the audio 
feedback system successfully brought 
the user in front of the desired object. 
In some cases, participants misinter-
preted the directions, such as “move 
left,” which they understood as turn-
ing left instead of moving left. Also, 
directions like “move left” or “move 
forward” did not specify how far, 
which led to significant variations in 
distance moved. On the basis of these 
results, we incorporated more precise 
directions, such as “move one step for-
ward” or “move less than a step left.”

Glove only
In another evaluation, we tested the 
camera system with only the glove 
camera and the vibrating motors to 
help with the final object grab when 
the user was within 3 feet of the target 
object. In this test, we used version A of 
SURF. Camera placement was a major 
challenge because we had to orient the 
camera in such a way that hand posture 
would not occlude the field of view—
the main reference for providing 
movement instructions. In the proto-
type Third Eye, the camera was paral-
lel to the arm to ensure that the hand 
and view were aligned. Unfortunately, 
in some experiments, the camera’s 

orientation changed because of sudden 
jerky hand movements, which resulted 
in a lost field of view and consequent 
direction to the wrong objects. Figure 
5 illustrates some of the glove design 
challenges we faced.

We also experimented with several 
configurations of the glove’s vibrational 
feedback. After several positional trials, 
we arrived at a design that placed the 
micromotors on the fingers of the left 
hand to guide movement: the thumb to 
indicate a movement to right, the little 
finger to indicate a movement to left, 
one on top of the palm for up naviga-
tion, and one below the palm for down 
navigation. We continue to investigate 
the effectiveness of vibration intensi-
ties, durations, and patterns produced 
by motors for tactile messaging.10

Testing with a visually 
impaired user
In the previous tests, users were 
sighted but blindfolded, which we 
found does not accurately represent 
a PVI, who has had time to adjust to 
visual impairment. We only recently 
formatively assessed the Third Eye 
system with a PVI who has been work-
ing closely with our NSF project for 
the past two years, carrying out basic 
shopping interactions with a simu-
lated store shelf. This individual had 
also participated in previous studies 
of a human-recognition prototype and 
field studies of PVI shopping practices. 
This experience made this individual 
an excellent feedback source in evalu-
ating our functional prototype. 

Auto handoff. We gave the PVI the 
smart glasses and only audio feedback 
with auto handoff (version B of SURF) 
but no vibrating glove. The PVI’s initial 
position was about 10 feet away from 
a mock shelf containing nine prod-
ucts from the cereal aisle. The PVI then 
selected the object by moving through 
an audio menu in the glasses. After 
selecting the target object, the PVI was 
able to follow the audio feedback and 
navigate to a point close to the target 
using guidance from the speech feed-
back, which was based on images from 
the glasses camera. The speech feedback 
(for example, “move two steps slightly to 
the left”) conveyed both direction and 
magnitude of movement, which enabled 
her to stay on the desired path. 

Once the PVI was successfully posi-
tioned in front of the identified object, 
head alignment was not as steady 
as what we observed for blindfolded 
sighted users. We also noted that our 
estimate of the depth from PVI to 
shelf was not always reliable. Despite 
these drawbacks, the PVI consistently 
used Third Eye as an augmentation 
tool, stopping when her assistive cane 
touched the shelf.

User-initiated handoff. On the basis 
of the auto handoff test, we conducted 
another experiment with a user- 
initiated handoff, in which the PVI 
employed the cane in transitioning 
from the glasses camera and instruc-
tions for body movements to the glove 
camera and instructions for hand 
movements. This handoff occurred 
when the PVI’s cane hit the bottom of 
the shelf, at which time the PVI directed 
Third Eye to mute audio commands 
based on the glasses camera. With this 
user-initiated handoff, the PVI was able 
to pick the desired object in the next 
trial. However, in other trials, the same 

(a) (b) (c)

FIGURE 5. Glove-camera positioning. The red arrows depict the angle of the actual view-
point for which directions are provided. The green dashed arrows represent the angle at 
which the user interprets commands. (a) The misalignment of angles causes the user to 
veer away from the object. (b) Angles are aligned correctly. (c) Angles are aligned but the 
object is occluded by the palm. 
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PVI selected an object just below the 
desired object. These trials implied that 
objects positioned above the glasses 
camera’s field of view were challenging 
and that we needed to further refine the 
directions provided. 

Glove configurations. In the final 
test with the PVI, we evaluated glove 

configurations to determine the best 
camera orientation and whether feed-
back through vibrations or audio was 
more effective. The PVI seemed to 
prefer vibration over the audio feed-
back, pointing out that audio feed-
back without a headset draws unnec-
essary attention during shopping and 
interferes with the environmental 

sounds that offer cues to a PVI in ori-
enting body position.

We also observed that the glove 
camera’s orientation required more 
robust engineering. The lack of ori-
entation reference caused the PVI to 
miss objects by less than a few inches 
in all trials. Moreover, when a miss 
occurred, the glove camera’s field of 
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view was occluded or the PVI was too 
close for the system to confidently 
identify the object. In these cases, 
the system stopped providing any 
directions for missed items because 
they exceeded the highest confidence 
score (see Figure 3b).

After 30 minutes of picking objects 
(including system pauses) with the 
user-initiated handoff and vibration 
and audio feedback, the PVI acquired 
the desired cereal box and placed it 
in the cart. Unfortunately, we had 
to return many other items to their 
shelves, as the PVI often selected 
the item immediately adjacent to the 
desired product. 

Inspired by testing with the PVI, 
we are now integrating new mod-
ules to ensure that PVIs spend 

more time putting objects into the 
shopping basket, not replacing them 
on a shelf. We are augmenting Third 
Eye with a hand-tracking algorithm 
from the glasses camera to make the 
final picking action more robust, add-
ing a text-in-the-wild recognition 
system to supplement the selected 
object’s validation against the tem-
plate image. We are also finessing 
the interface for shelf-depth estima-
tion, which the user infers, so that the 
handoff from body movement to hand 
movement can be more seamless. 
These enhancements are the basis 
for developing a hybrid approach that 
integrates directional guidance for 
large-scale body movement based on 
the shelf view, small-scale body move-
ment and arm and hand gestures 
based on a close-up view, and inter-
faces that provide a smooth transfer-
ence from one view to the other. 

Our combination of partial and 
complete system evaluations has 

given us enough insights to con-
struct a clear path for refining Third 
Eye before testing with a larger num-
ber of PVIs. We have shown the cur-
rent version at K−12 science fairs to 
inspire interest in computing appli-
cations, and conducted a hands-on 
demo for US Congress members in an 
effort to educate policymakers. We 
look forward to seeing results from 
a larger-scale test with Third Eye’s 
enhanced version. 
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